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Set Integral Equations in Metric Spaces

IoANA TISE

ABSTRACT. Let Psp o (R™) be the family of all nonempty compact, con-
vex subsets of R".
We consider the following set integral equations:

b
(1) X(t):/ K(t,s,X(s))ds+ Xo

@) X(t) = /tK(t,s,X(s)) ds + Xo,

where K : [a,b] X [a,b] X Pep,co(R") = Pep.co (R™) and Xo € Pep,co (R™).

The purpose of the paper is to study the existence and data depen-
dence of the solutions of the set integral equations (1) and (2), by using
a fixed point approach. Our results generalize and extend the results
given in [2]. For other similar results see [3] and [4].

1. INTRODUCTION

Let R™ be the real n-dimensional Euclidian space and P, .,(R™) be the
family of all nonempty compact, convex subset of R"™ endowed with the
Pompeiu-Hausdorff metric H. It is well-known that (P ., (R"™),H) is a
complete metric space.

We consider the following set integral equations:

b
(1) X(t):/ K(t,s,X(s))ds+ Xo,

@) X(t) = /tK(t,s,X(s))ds~|—Xo,

where K : [a,b] X [a,b] X P cy(R") — Pep oo (R™).

A solution of (1) or (2) means a continuous function X : [a, b] — Pep cp (R™)
which satisfies (1) respectively (2) for each ¢ € [a, b].

The purpose of the article is to study the existence and data dependence
of the solutions of the equation (1) and (2). The approach is based on the
well-known Banach-Caccioppoli contraction principle. Our results generalize
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96 SET INTEGRAL EQUATIONS IN METRIC SPACES

and extend the results given in [2]. For other similar results see [3], [5] and
[4].

The paper is organized as follows. Next section, Preliminaries, contains
some basic notations and notions used through the paper. Third section
presents existence and the data dependence results of the solution for the
equations (1) and (2).

2. PRELIMINARIES

The aim of this section is to present some notions and symbols used in
the paper.
Let us define the following generalized functionals:
D:PR") x P(R") - Ry, D(A,B)=inf{d(a,b) | a€ A,bec B}.

D is called the gap functional between A and B. In particular, if 2 € X
then D(xg, B) := D({x0}, B).

p: PR") x P(R") - Ry U{+oc}, p(A,B)=sup{D(a,B)|ac A}.

p is called the (generalized) excess functional.

H: P(R") x P(R") — R, U {+00}, H(A, B) = max{p(4, B), p(B, A)}.
H is the (generalized) Pompeiu-Hausdorff functional.
It is known that (P co(R™), H) is a complete metric space ([1]).
Lemma 2.1 ([6]). Let X be a Banach space. Then
H(A+C,B+D)<H(A,B)+ H(C,D), for A,B,C,D e P(X).
Proof. Let € > 0. From the definition of H it follows that there exists
(a+c¢) € A+ C such that D(a+¢,B+ D) > H(A+C, B+ D) — ¢ or exists
(b+d) € B+ D such that D(b+d,A+C)>H(A+C,B+ D) —«.
Let us consider the first case. For a,c we get b € B,d € D such that:
€ €
la—bl| < H(A,B) + 3 lc—d|| < H(C,D) + 7
Then H(A+C,B+D)—¢ < D(a+c¢,B+D) < |[(a+c¢)—(b+d)|| we obtain
that HLA+C,B+ D) —e¢ < H(A,B) + H(C, D) + ¢, proving the desired
inequality. (|

3. MAIN RESULTS

We consider on C([a, b], Pep,cv(R™)) the metric:

H,(X,Y):= max H(X(t),Y(t)).
te(a,b]
The pair (C([a, b], Pep,co(R™)), Hy) forms a complete metric space.
Our first result is an existence and uniqueness theorem for the solution of
the equation (1).
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Theorem 3.1. Let K : [a,b] X [a,b] X Pepcy(R") — Pep o (R™) be a multi-
valued operator. Suppose that:

(i) K is continuous on [a,b] X [a,b] X Pep py(R™) and Xo € Pep o (R™),
(ii) K(t,s,-) is Lipschitz, i.e., there exists L > 0 such that:

H(K(t,s, A),K(t,s, B)) < LiH(A, B),

for all A, B € Py, oo(R™) and for all t,s € [a, b],
(iii) L (b—a) < 1.

Then the set integral equation

b
(1) X(t) = / K(t, 5, X(s)) ds + Xo

has a unique solution.

Proof. Consider the operator: I' : Py o (R™) — Py o (R™) defined for each
t € [a,b] by

b
rxX(t) = / K(t,s,X(s))ds+ Xo.
We need to verify the contraction condition for I.

H(I(X)(t), T(Y)(t) =

—H </:K(t,57X(s)) ds +X0,/abK(t,s,Y(s)) ds +X0>

< H(Xo, Xo) + H (/ab[((t,s,X(s)) ds, /abK(t, 5 Y(s)) ds)

Taking the maximum for ¢ € [a, b], then we have:

b

tgl[%]ﬂ(r()()(t),r(y)(t)) < Lk trél[;a?g]H(X(s),Y(s)) ds

H.(T(X),T(Y)) < Lg(b—a)H.(X,Y),

for all ¢ € [a,b], and X,Y € C([a,b], Pep.co(R™)).
Thus, the integral operator I is Lipschitz with constant Lr = Li(b—a) <
1. From the contraction principle we get the result. O

A data dependence result for the solution of equation (1) is:
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Theorem 3.2. Let Ki,K> : [a,b] X [a,b] X Pepo(R™) — Pepeo(R"?), be
continuous. Consider the following set equations:

b
(3) X(t)—/ Ki(ts, X(s)) d s+ Xo
ab
(4) Y(t):/ Ko(t,s,Y(s) ds + Yo
Suppose:

(i) there exists Lx > 0 such that H(K (t,s, A),K(t,s,B)) < LxH(A, B),
for all A, B € Py o(R") and t, s € [a,b], with Lxg(b—a) < 1 (denote
by X* the unique solution of the equation (3));
(ii) there exists n1,m2 > 0 such that:
(a) H(K:1(t,s,U), Ka(t,s,U)) <, forall (t,s,U) € [a,b] x[a,b]
Py ev(R™), and
(b) H(X07Yb) < m2;

(iii) there exists Y* a solution of the equation (4).

Then

n2 + (b — a)

H.(X*Y*) < L.(b—a)

Proof. We have:

H(X*() Y*(t)) =

_H< Ki(t, s, X*(s ))ds+X0,/bK2(t,s,Y*(s))ds+Y0>
<n(f
< (f

KltSX dS/KQIfSY())d)—{—H(XQ,Yb)
Ki(t,s, X*( /KltsY )d5>

+H</K1t$Y dS/KQtSY())d)+772
/bH(K1 t, s, X*(s)), K1(t,s,Y*(s))) d s+

b
+ H (K1(t,s,Y"(5)), Ka(t, s,Y*(s))) ds + 12

b b
/ H(Kl(t s, X*(s)), Ki(t,s,Y*(s))) ds+/ m ds+ n.
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By taking the maximum for ¢ € [a, b], then we have:

max H(X*(t),Y*(t)) <

te(a,b]
e (L (b—a)H(X*(#),Y*(t)) +m(b—a)+n)
<Lg(b—a) trél[aﬁH(X*(t),Y*(t)) +n1(b—a)+n
* * 772+771(b_a)
H(X ), Y™ (t)) <
e R ()
* * 772+771(be)
< =
H*(X’Y)_l—LK(b—a) =

We will prove now an existence result and a data dependence result for
the solution of the equation (2).
We consider on C([a, b], Pop,cv(R™)) the metric:

HB(X)Y):= m[a}g} [H(X(t),Y(t)e” ™9, with arbitrary 7 > 0.
t€la,

The pair (C([a, b], Pep,co(R™)), HP) forms a complete metric space.

Theorem 3.3. Let K : [a,b] X [a, b] X Pep ¢y (R™) — Prp oo (R™) be an operator.
Suppose that:

(i) K is continuous on [a,b] X [a,b] X P cy(R™) and Xo € Pep co(R™),
(ii) K(t,s,-) is Lipschitz, i.e., there exists L > 0 such that

H(K(t,s,A),K(t,s,B)) < LxH(A, B),
for all A, B € Py o(R") and t, s € [a,b].
Then the set integral equation

2) X(t) = /tK(t,s,X(s)) ds+ Xo

has a unique solution.

Proof. Consider the operator I' : Py o, (R") — Ppp ey (R™) defined for each
t € [a,b] by

t
TX(t) = / K(t,s,X(s))ds + Xo.
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We will prove the contraction condition for T'.
H(D(X)(6),T(Y)(1) =

—H(/ K(t s, X(s ))ds+X0,/ K(ts,Y (s ))ds—i—Xo) <

IN

H(Xo, Xo) —i—H(/KtsX ds/KtsY())d>§

IN

/ K(t, 5, X(s)), K(t,5,Y(s))) d s g/ LicH (X (s),Y(s)) ds =
Lk / H(X(s ),Y(s))e_T(S_“)eT(S_a)ds <

t
< LgHP(X,Y) / €T 45 =

LKHB(X Y)( T(t—a) _ 1)

Then we have:

HE(T(X),I(Y)) < THB(X Y),
for all ¢ € [a,b], X,Y € C([a,b], Pep,co(R™)), 7> 0.

Hence, we can apply the Banach contraction principle for I', since by
choosing 7 > Lk, we get Ly := LTK < 1. By the contraction principle, the
proof is complete. O

Remark 3.1. Theorem 3.3 in this paper is a special case of Hammerstein’s
equality. General solution of this equality is given in [7].

A data dependence result is:

Theorem 3.4. Let K1, K : [a,b] X [a,b] X Pep ey (R") — Pep o (R™) be con-
tinuous. Consider the following set equations:

(5) X(t) = /t Ki(t,s, X (s)) ds + X

(6) Y(t) = /t Ks(t,s,Y(s))ds + Yy

Suppose:
(i) H(K(t,s,A),K(t,s,B)) < LxH(A,B), for all A,B € P, ,(R")
and t, s € [a,b], where L > 0 (denote by X* the unique solution of
the equation (5));
(ii) there ewists m,n2 > 0, such that H(Ki(t,s,U),Ka(t,s,U)) < i,
for all (t,s,U) € [a,b] x [a,b] X Pepen(R™) and H(Xo,Yy) < 12;
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(iii) There exists Y* a solution of the equation (6).
Then
B * * 12 +771 (b ) —7(b—
H*(X7Y)_1—LK r(ba)(

T

where T > L).
Proof. We have:
H(X*(t),Y™(t)) =

:H</atK1(t,s,X*(s))ds—l—Xg,/:KQ(t,s,Y*(s))ds—l—Yo>
SH</atK1(t,s,X*(s))ds,/atKg(t,s,Y*(s))ds
SH</tKl(t,s,X*(s))ds,/tKl(t,s,Y*(s))ds

+;</tK1(t 5,Y*(s)) ;8,/atK2(t,s,Y*(s)) ds> +m2

/tH(Kl t,5,X*(s)), K1(t,s,Y*(s))) ds+

+ tH Ki(t,s,Y"(s ))>K2(tﬁsvy*(5))) ds + 12

t

+ H(X07 Yb)

_l’_

t
(s x0 G Kl(t,s,Y*(s)))ds—l—/ s+

\\

t
LKH 5), Y*(s))e T V(70 q 5 4 / m d s+ ne.
a
By taklng the maximum for ¢ € [a, b], we have:

max (H (X*(t), y* (t))e—f(t—a)ef(t—a)> <

tela,b] B

t t
< max (/ LKH(X*(S),Y*(s))e*T(S*“)eT(“”*a)ds —|—/ mds+ 772> ;

t
HB(X*, y*)er0=0) = L HB(X*,Y*) / eV ds +my(b—a) +1p =
HE (X, Y*) (e — 1) + (b — a) + o
< Z2HB(X Ve 4o (b — a) + g,
=

HB(X*,Y ) m2 +m ([ll) ) 7T(b7a).
1 — Lx
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1

2]

3l

(4]

5]

(6]

(7]

For 7 > Lk, we have

+m—a
HB(X* Y*) < 12 771( )eff(bfa). 0
* bl — 1 - LfK
p
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